Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes.

نویسندگان

  • F Pompeo
  • J van Heijenoort
  • D Mengin-Lecreulx
چکیده

The glucosamine-1-phosphate acetyltransferase activity but not the uridyltransferase activity of the bifunctional GlmU enzyme from Escherichia coli was lost when GlmU was stored in the absence of beta-mercaptoethanol or incubated with thiol-specific reagents. The enzyme was protected from inactivation in the presence of its substrate acetyl coenzyme A (acetyl-CoA), suggesting the presence of an essential cysteine residue in or near the active site of the acetyltransferase domain. To ascertain the role of cysteines in the structure and function of the enzyme, site-directed mutagenesis was performed to change each of the four cysteines to alanine, and plasmids were constructed for high-level overproduction and one-step purification of histidine-tagged proteins. Whereas the kinetic parameters of the bifunctional enzyme appeared unaffected by the C296A and C385A mutations, 1,350- and 8-fold decreases of acetyltransferase activity resulted from the C307A and C324A mutations, respectively. The Km values for acetyl-CoA and GlcN-1-P of mutant proteins were not modified, suggesting that none of the cysteines was involved in substrate binding. The uridyltransferase activities of wild-type and mutant GlmU proteins were similar. From these studies, the two cysteines Cys307 and Cys324 appeared important for acetyltransferase activity and seemed to be located in or near the active site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

Site-Directed Mutagenesis in Human Granulocyte-colony Stimulating Factor, Cloning and Expression in Escherichia coli

Human granulocyte colony stimulating factor (hG-CSF) induces proliferation and differentiation of granulocyte progenitor cells. This glycoprotein is currently being used for treatment of neutropenia, in patients who have undergone bone marrow transplantation. So far, different researchers have tried to enhance hG-CSF biological activity and stability. In this study, Polymerase Chain Reaction (P...

متن کامل

Design, cloning, expression and evaluation of cysteine-substitutes of intact and truncated molecules of streptokinase

Introduction: Thrombosis and the blockage of blood vessels with clots, can lead to acute myocardial infarction and some times even death. Aside from surgical interventions to remove the blockage, the only available treatment is the administration of thrombolytic agents to dissolve the blood clot. Streptokinase (SK) is the most commonly used fibrinolytic drug for this purpose. However, SK...

متن کامل

The active site of Escherichia coli UDP-N-acetylglucosamine acyltransferase. Chemical modification and site-directed mutagenesis.

UDP-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes the reversible transfer of an R-3-hydroxyacyl chain from R-3-hydroxyacyl-acyl carrier protein to the glucosamine 3-OH of UDP-GlcNAc in the first step of lipid A biosynthesis. Lipid A is required for the growth and virulence of most Gram-negative bacteria, making its biosynthetic enzymes intriguing targets for the development ...

متن کامل

Kinetic Modelling of GlmU Reactions – Prioritization of Reaction for Therapeutic Application

Mycobacterium tuberculosis(Mtu), a successful pathogen, has developed resistance against the existing anti-tubercular drugs necessitating discovery of drugs with novel action. Enzymes involved in peptidoglycan biosynthesis are attractive targets for antibacterial drug discovery. The bifunctional enzyme mycobacterial GlmU (Glucosamine 1-phosphate N-acetyltransferase/ N-acetylglucosamine-1-phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 180 18  شماره 

صفحات  -

تاریخ انتشار 1998